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Predicting incoming enrollment is an ongoing concern for the School District of Philadelphia (SDP) and
similar districts with school choice systems, substantial student mobility, or both. Inaccurate predictions
can disrupt learning as districts adjust to enrollment fluctuations by reshuffling teachers and students
well into the fall semester. This study compared the accuracy of four statistical techniques for predicting
fall enrollment at the school-by-grade level, using data from prior years, to assess which approach
might be the most useful for planning school staffing in SDP. The predictions differ little in accuracy:
predicted cohort size differs from actual cohort size by roughly six students across all methods The
statistical techniques leave much student mobility unaccounted for. Even under the best prediction
approach, students and teachers in 22 percent of incoming grade levels within schools might have to be
reassigned because of unexpected student mobility and district rules on maximum class size. Predictive
accuracy is not meaningfully different in schools with larger proportions of Black students, economically
disadvantaged students, or English learner students. Of the 259 predictors analyzed, 4 stand out as the
most important: prior cohort sizes, in-school suspensions, out-of-school suspensions, and absences.

Why this study?

Fluctuations in enrollment are a perennial issue for school districts (Hussar & Bailey, 2017). Unpredictable enroll-
ment patterns can bedevil school systems when a mismatch between predicted and actual cohort sizes (defined
in this study as school-by-year-by-grade units) in the fall disrupts teacher and student classroom assignment. For
example, in a district with a class size limit of 30 students, a school that planned for 100 students entering a par-
ticular grade but has only 90 students actually attend in the fall would likely have to cut back from four to three
classrooms, reassigning the fourth teacher to another grade or school and the students in that teacher’s would-
be class to the other three classrooms.

The core problem for most schools is that successive incoming cohorts of students differ in size (Sweeney &
Middleton, 2005). Beyond changes in initial cohort sizes, many schools could face further variation in enroll-
ment because of school choice systems (which allow students to change schools without a residential move) and
student mobility, or both. In 2016, 112 districts serving 13 million students in 24,000 schools across the country
had a choice system (Whitehurst, 2017). The Regional Educational Laboratory (REL) Mid-Atlantic region is home
to at least nine of these districts: Washington, DC; Camden, New Jersey; Newark, New Jersey; Philadelphia, Penn-
sylvania; and five districts in Maryland' (Whitehurst, 2017). These districts serve more than 1 million students in
2,000 schools.

In the School District of Philadelphia (SDP), many schools experience such disruption (Schmitt, 2017). SDP reports
that in the spring many students plan to attend their neighborhood public school
in the fall but in the intervening months choose to attend a different school, be
it a charter or private school. The district allocates resources in March for the
upcoming school year and then reallocates resources as needed after October 1,
once it has accounted for discrepancies between prospective spring enroliment

For additional information,
including technical
methods and supporting
analyses, access the

report appendixes at
1. The five districts in Maryland are Anne Arundel County, Baltimore City, Baltimore County, https://go.usa.gov/xMQhG.
Montgomery County, and Prince George’s County Public Schools.

REL 2022-124 1


https://go.usa.gov/xMQhG

and actual attendance in the fall (a process SDP refers to as leveling). This reallocation can entail eliminating
classrooms, reassigning students to a different teacher, and reassigning teachers to a different school or grade
level. Because of this late sorting, many students experience changes in classroom peers and teachers in October,
which can have negative impacts on classroom engagement (Isernhagen & Bulkin, 2009) and performance on
end-of-year standardized tests (Gibbons & Telhaj, 2011; Henry & Redding, 2020; Whitesell et al., 2016). Though
some students move into neighborhood schools between the spring and the fall, cohorts in SDP neighborhood
schools experience a net loss of students progressively from grade 1 to grade 8, such that each cohort is smaller
in grade 8 than when it began in kindergarten, as students move to charter schools, repeat grades, or leave the
district entirely.

SDP tries to account for such attrition, as well as new entrants to the school system, when allocating teachers
to schools and grades. In recent years it has modeled enrollment based on broad trends from prior cohorts, the
proximity of alternative schools to students’ neighborhood schools, and other factors such as nearby school clo-
sures. The models are not formally fit on prior data but are based on assumptions about future behavior and the
size of the cohorts that prospectively enroll in the spring.? SDP reports that unpredicted fluctuations still disrupt
classroom stability. This is largely because the district tries to allocate teaching staff—its largest cost—so that the
number of students per class is as close to the class size limit of 30 without going over. With more accurate pre-
dictions of cohort sizes, SDP could reduce the disruptions caused by attrition and (to a lesser extent) in-migration
of new students.

Machine learning—a systematic approach to statistical prediction—might enhance predictions of student enroll-
ment, which would enable SDP to prospectively allocate resources in a manner that results in less disruption in
October. Traditional statistical methods such as ordinary least squares (OLS) regression and researcher practices
such as sequentially testing increasing numbers of predictors might fit sample data well but perform less effec-
tively on novel data (a phenomenon known as overfitting). Machine learning combines more recent statistical
prediction tools with safeguards against overfitting in an attempt to yield more stable, accurate predictions (Mul-
lainathan & Spiess, 2017). This report uses the term algorithm to refer to statistical methods of data analysis. A
prediction algorithm can be either a simple regression or a more complex model that relies on machine learning.

Many states use complex administrative data and machine learning algorithms to improve services for segments
of their populations. For example, in Connecticut and Missouri predictive algorithms identify high-risk people
who use certain medical services more than others and match them with intensive care management teams
(Bergh et al., 2018). Applying machine learning in predicting criminal activity has substantially increased in the
past decade, to predict both who might be involved in the criminal activity and where criminal activity might take
place (Berk, 2017; Chandler et al., 2011; Gerber, 2014; McClendon & Meghanathan, 2015; Rhodes, 2013; Rockoff
et al., 2008; Toppireddy et al., 2018).

In education, researchers have applied machine learning more recently to estimate individuals’ likelihood of
achieving key outcomes of interest (Porter & Balu, 2016). In informing district determinations of which teachers
to retain, Chalfin et al. (2016) compared the performance of machine learning with that of a traditional teacher
value-added model in predicting student gains in the final year of a study that randomly assigned teachers to
students. They found that using machine learning rather than value-added measures to identify the bottom
10 percent of teachers and replacing them with average quality teachers would increase student learning gains
by 0.02 standard deviation in math and 0.01 standard deviation in language arts in the school system as a whole
(the gains were an order of magnitude larger for directly affected students). Though these effects are small, the

2. The informal judgments involved in the models, coupled with staff turnover at SDP, made it impossible to replicate this approach so
the study team included a simple OLS regression with a basic set of predictors as a comparison to the more sophisticated machine
learning algorithms.
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cost of using machine learning algorithms instead of traditional value-added modeling is likely trivial (though the
authors do not provide a cost estimate), so switching to these algorithms might be cost-effective. A recent REL
Mid-Atlantic study used machine learning to generate accurate predictions of academic performance for ele-
mentary, middle, and high school students using administrative data from education and child welfare agencies
(Bruch et al., 2020). In short, machine learning algorithms appear to be a promising strategy for districts deciding
about resource allocation, but it remains unclear whether they will markedly improve on traditional statistical
prediction methods and other current forecasting practices.

The current study explored how machine learning algorithms might improve predictions of incoming cohort size
in SDP. More accurate predictions could help SDP better anticipate incoming cohort sizes and, consequently,
reduce instability among students and staff. If the new methods of projecting enrollment prove highly accurate,
other districts in the REL Mid-Atlantic region and across the country might consider similar strategies to manage
the burden that a choice system places on enrollment stability.

Research questions
This study addressed one primary research question and three subquestions:

1. How well do machine learning algorithms predict incoming cohort sizes for grade 1-8 in SDP’s neighborhood
schools?

1a. How well does each algorithm predict incoming cohort sizes for the following fall semester?

1b. Does the precision of each algorithm differ for cohorts with a larger proportion of Black students, econom-
ically disadvantaged students, or English learner students compared with cohorts overall?

Tc. Which administrative variables contribute most to the predictions?

The first two research tasks proceeded along similar lines. First, the study team built prediction models by apply-
ing four prediction algorithms—OLS, least absolute shrinkage and selection operator (LASSO), elastic net, and
random forest—to retrospective data from the 2016/17 and 2017/18 school years. Those models were then used
to predict incoming grade sizes in the 2018/19 school year. Performance was assessed by comparing predicted
grade sizes to actual grade sizes. Box 1 summarizes the data sources, sample, and methods, and appendix A pro-
vides additional details.

Box 1. Data sources, sample, and methods

Data sources. The study used student-level administrative data provided by the School District of Philadelphia (SDP) for students
enrolled in SDP neighborhood K-8 schools during the 2015/16—2018/19 school years. The data included attendance records, test
score performance, demographic information, and geographic distance from neighborhood and alternative schools as well as a
unique identifier to track students over time and across data files.

Sample. The study used data on students who were in grade 1-8 in 174 SDP neighborhood schools in any school year from 2015/16
to 2018/19. Each year had about 1,000 grade-by-year units. The analytic sample contained 149,154 unique students, 50 percent of
whom were Black, 21 percent of whom were Hispanic, 13 percent of whom were English learners, 14 percent of whom were White,
and 61 percent of whom were economically disadvantaged (see table A3 in appendix A). These proportions are similar to those for
SDP as a whole but differ markedly from those for the overall U.S. student population.

Methodology. The analysis used observed patterns between grade-level enroliments and school-level administrative data in one
period (the base year) to predict grade-level enroliments in a subsequent period (the target year) in each SDP school that enrolled
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students in grades K—8. The predictor data are from February of the base year or of prior years (for lagged data), as that is the only

information available to the district when it allocates staff for the target year. The outcomes are from fall of the target year, when

grade sizes are realized. Six categories of data were used as predictors:

Grade size. Although incoming grade size in the target year was the outcome variable, current and past grade sizes for the same
cohort of students (in earlier grades) and other cohorts of students were included as predictors. The change in the current
cohort’s size from the previous grade to the current grade—for example, the number of students in grade 4 in the base year
compared with the number of students in grade 3 in the prior year—and the change in grade size in a given school and grade
from the prior year to the base year—for example, the number of students in grade 4 in the base year compared with the
number of students in grade 4 in the prior year—were included. Additionally, the lagged attrition count for the current cohort
in the target school-by-grade combination—for example, to predict the incoming cohort size in grade 4 in a given school in
2017, the number of students lost from grade 3 to grade 4 in that school for the current (2016) grade 4 cohort—was included.
Attendance and suspensions. Attendance was calculated as the total number of absences across all students in a given year
and grade. The study team created three indicator variables at the student level: 0-5 absences, 610 absences, and more than
10 absences.! The cohort-level aggregate versions of those indicators are the number of students in each category and were
included as predictors along with total absences at the cohort level. For in-school and out-of-school suspensions the counts of
students in the following categories for each indicator were included: less than 3 days, 3—5 days, and more than 5 days.

Test scores. Student-level data included three measures of English language arts—the Reading Curriculum-Based Measure-
ment, Nonsense Word Fluency, and Oral Reading Fluency—in grade 1 and 2 and English language arts and math performance
on the Pennsylvania System of School Assessment in grade 3 and above. The study team calculated within-district percentile
rankings by grade across all years for each student for each subject and test and then divided the percentile ranks into three
equal categories (a process known as trichotomization): under 30, 30-60, and above 60. Missing data, including structurally
missing scores for students in grades that do not receive a particular test, are not counted in the three categories. The counts
of students in each performance category and the counts of students with missing values in each test at the cohort level were
aggregated and included as predictors. Trichotomization provides more information on the distribution of achievement within
cohorts than would be available with performance averages, especially with modest amounts of missing data.

Demographics. Aggregate counts of students in each cohort for the following demographic variables were included as predic-
tors: Asian, Black, Hispanic, Native Hawaiian/Pacific islander, White, Multiracial, unknown race/ethnicity, male, female, eco-
nomically disadvantaged, English learner students, and students with an Individualized Education Program.

Geographic data. The study team calculated the distances from students’ home address to their neighborhood school and the
nearest charter school. Each continuous distance measure was trichotomized into categories of less than 0.5 mile, 0.5-1 mile,
and more than 1 mile. The counts of students in each category for each measure and the count of students with missing data at
the cohort level were included as predictors. As with test scores, the desire for distributional information and the large number
of students with missing addresses led to the use of trichotomous variables.

Structure. The study team created indicator variables for each grade level and school.

The study used four prediction algorithms:

Ordinary least squares (OLS). A widely used statistical model that serves as the baseline to which more sophisticated models
are compared.

Least absolute shrinkage and selection operator (LASSO). An extension to OLS that constrains the influence of weak predictors.
The constraints might produce more accurate predictions of incoming cohort sizes by focusing on the strongest predictors.
Elastic net. An algorithm that produces a weighted average of predictions from LASSO and an alternate set of constraints. The
blending of constraints might enhance predictions of incoming cohort sizes if LASSO discards too many predictors.

Random forest. A statistical routine that iteratively tests partitions of the data until predictions of subgroup outcomes can
no longer be improved on. By selecting predictors that perform well across many subsets of the data, this algorithm might
produce more reliable predictions of incoming cohort sizes.

Two common metrics (the median absolute deviation between predicted and actual cohort sizes and the root mean squared

error) and one study-specific metric (the percentage of school-by-grade cohorts subject to reallocation) were used to evaluate

the performance of the prediction algorithms. The median absolute deviation measures the number of students by which a pre-

diction deviates (in a positive or negative direction) from the actual number of students in a typical target grade. The root mean

squared error is the square root of the sum of squared differences between the predicted and actual number of students in target
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grades; it is more sensitive to outliers, such as those that arise when predicted and observed grade sizes are markedly different.
The percentage of school-by-grade cohorts subject to reallocation was based on the number of grades for which predicted and
actual student counts were on opposite sides of a multiple of 30—the nominal limit on class size in SDP (under the assumption
that schools are allocated the minimum number of classes to serve each grade without allowing class size to exceed 30). This is a
measure of how often the discrepancy between predictions and realized data is likely to cause disruptive reallocation of teachers
and students in the fall. However, this reallocation rule might not reflect actual district practices. Accordingly, reallocation pat-
terns were also calculated with the alternate assumption that the district must abide by the class size limit of 30 in the springtime
allocation of teachers but will tolerate observed class sizes of up to 35 in the fall. This alternative rule still assumes the district will
use as few teachers as possible.

The accuracy measures were calculated for the analytic sample as a whole, as well as for cohorts in which the proportion of
Black students is above the median for SDP, for cohorts in which the proportion of economically disadvantaged students is above
the median, and for cohorts in which the proportion of English learner students is greater than 10 percent. The study team also
investigated which variables provide the most information on incoming cohort size.

Before running each algorithm, the target years were partitioned into the modeling set (target years 2016/17 and 2017/18) and
the extrapolation set (target year 2018/19).

Machine learning algorithms are built to maximize predictive performance on a randomly excluded testing set of data, but any
use in the real world requires that predictions be extrapolated to new datasets in which the outcome has not yet been recorded.
The 2018/19 data served as that dataset in this case and allowed for testing the generalizability of prior years’ models to future
cohort sizes. For transparency, accuracy measures are presented for the testing set and the extrapolation set, although the study
team believes that predictive performance in the extrapolation set is the better indication of future performance.

Note

1. These thresholds were chosen because they are common in other datasets that the study team has worked with.

Findings

All four algorithms have similar predictive accuracy, with the random forest algorithm slightly
outperforming the others

The median absolute deviation for each algorithm represents how close the predicted cohort sizes (in number of
students) were to the observed cohort sizes in a typical cohort. The range of median absolute deviations is small,
from 5.74 students per school by grade to 6.21 (figure 1and table 1). This means that all four algorithms generated
predictions that were within about six students of the observed cohort sizes. The random forest algorithm has
the lowest median absolute deviation, 5.74, which is roughly 10 percent of the median cohort (school-by-grade)
size in the extrapolation year (2018/19).

To assess the real-world consequences of error in predictions, the median absolute deviation of each algorithm
was converted to the percentage of cohorts that would be subject to reallocation in the fall if the district relied on
the algorithm for planning in the spring. Reallocation disrupts learning and is a chief concern for the district when
predicting incoming cohort sizes. The percentage of cohorts that would be subject to reallocation as a result of
prediction error is 22 percent for the random forest algorithm, 23 percent for the LASSO and elastic net algo-
rithms, and 29 percent for the OLS algorithm (table 2). This means that between a fifth and a quarter of cohorts
would have to be reshuffled in October—for example, being split from two classes into three or condensed from
three classes to two.
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Figure 1. Predictive accuracy for student enrollment in K-8 neighborhood schools in the School District of
Philadelphia was similar across all four algorithms analyzed

Median absolute deviation (number of students)
8
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OLS is ordinary least squares. LASSO is least absolute shrinkage and selection operator.
Note: Values are from the extrapolation set (2018/19 school year).

Source: Authors’ calculations based on administrative data for 201519 provided by the School District of Philadelphia.

Table 1. Predictive accuracy for incoming cohort sizes in School District of Philadelphia neighborhood schools,
by algorithm

Median absolute deviation

Algorithm (number of students)
oLs 5.99
LASSO 6.21
Elastic net 6.12
Random forest 5.74

OLS is ordinary least squares. LASSO is least absolute shrinkage and selection operator.
Note: Figures are from the extrapolation set (2018/19 school year).

Source: Authors’ calculations based on administrative data for 201519 provided by the School District of Philadelphia.

Table 2. Percentage of school-by-grade cohorts subject to reallocation, by algorithm

Algorithm Percent

OoLsS 29
LASSO 23
Elastic net 23
Random forest 22

OLS is ordinary least squares. LASSO is least absolute shrinkage and selection operator.
Note: Figures are from the extrapolation set (2018/19 school year).

Source: Authors’ calculations based on administrative data for 201519 provided by the School District of Philadelphia.
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Performance does not differ across cohort demographic composition

The random forest algorithm, highlighted here because it slightly outperformed the other algorithms, produces
predictions with similar accuracy for cohorts in which the proportion of Black students is above the median for
SDP, for cohorts in which the proportion of economically disadvantaged students is above the median, and for
cohorts in which the proportion of English learner students is greater than 10 percent. The percentage of those
cohorts that would be subject to reallocation ranges from 21 percent to 25 percent (table 3; see tables B4, B6, and
B8 in appendix B for results from all four algorithms).

The alternate reallocation rule, which tolerates class sizes of up to 35, reduces disruptions by roughly half for
three of the four models. About 11 percent of cohorts are subject to reallocation under the random forest predic-
tions, and 12 percent are under the LASSO and elastic net predictions (table 4). This provides a likely lower bound
on reallocation. It is improbable that the district would allow class sizes of 35 for schools with six or seven classes
per grade, because there would be enough students above the 30 student cutoff in those classes to fill another
class.

There are not clear patterns by grade level (table 5).2

Table 3. Percentage of school-by-grade cohorts subject to reallocation under the random forest algorithm, by
cohort demographic

Cohort demographic Percent

Proportion of Black students is above the median for SDP 21
Proportion of economically disadvantaged students is above the median for SDP 22
Proportion of English learner students is greater than 10 percent 25

SDP is School District of Philadelphia.
Note: Figures are from the extrapolation set (2018/19 school year).

Source: Authors’ calculations based on administrative data for 201519 provided by the School District of Philadelphia.

Table 4. Percentage of school-by-grade cohorts subject to reallocation with higher class size tolerance, by

algorithm

OoLs 17
LASSO 12
Elastic net 12
Random forest n

OLS is ordinary least squares. LASSO is least absolute shrinkage and selection operator.
Note: Figures are from the extrapolation set (2018/19 school year).

Source: Authors’ calculations based on administrative data for 2015-19 provided by the School District of Philadelphia.

3. Because of the use of lagged information on grade sizes and cohort, as well as information on past patterns of attrition from cohorts,
predictions can be made only for grade 2—7 rather than for grade 1-8.
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Table 5. Percentage of school-by-grade cohorts subject to reallocation under the random forest algorithm, by
grade level

Grade 2 30
Grade 3 23
Grade 4 28
Grade 5 19
Grade 6 32
Grade 7 27

Note: Figures are from the extrapolation set (2018/19 school year).

Source: Authors’ calculations based on administrative data for 2015-19 provided by the School District of Philadelphia.

Four predictors provide the most meaningful contribution to accurately predicting school-by-grade
enrollment

Of the 259 predictors assessed in the models, only a handful meaningfully contribute to predictive accuracy. The
random forest algorithm, again highlighted here because it slightly outperformed the other approaches, produc-
es an importance score on a scale of O (least important) to 1 (most important) for each variable. The following
discussion relies on these scores.

Not surprisingly, the number of students in a grade in one year is the best predictor of the number of students
in the same grade of the same school the following year (see table 6 for the top four predictors). The three next
best predictors are the number of students with more than five in-school suspensions, the number of students
with more than five out-of-school suspensions, and the number of students with fewer than six absences. There is
a large drop in variable importance scores after the first four predictors. Many of the predictors ranked 5th—15th
are indicators of missingness on test scores (see table B10 in appendix B). These missing test indicators are likely
picking up signal from grade-level indicators because much of the missingness is structural due to different stan-
dardized tests across grades. Beyond what can be explained by missing test scores, individual grade-level indica-
tors have low importance scores (near .01 or lower). The 15th ranked predictor, with an importance score of .10,
is the base-year enrollment in the grade before the prediction grade (that is, the spring enrollment of the same
cohort of students whose fall enroliment is being predicted). In other words, a school’s current enrollment for
each grade (e.g., the number of grade 5 students this year) is a better predictor of enroliment size in that same
grade the following year (e.g. the number of grade 5 students next year) than is the current size of the cohort that
will enter that grade (e.g., the number of grade 4 students this year).

Table 6. Top four predictors of school-by-grade enroliment under the random forest algorithm

Predictive Predictor

strength rank Predictor importance Data category

1 Base-year enrollment (prior cohort) in same grade as prediction year .97 Grade size

2 Number of students with more than five in-school suspensions 9 Attendance and suspensions
3 Number of students with more than five out-of-school suspensions .83 Attendance and suspensions
4 Number of students with fewer than six absences .65 Attendance and suspensions

Source: Authors’ calculations based on administrative data for 2015-19 provided by the School District of Philadelphia.
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Limitations

This study has two main limitations. First, the precise procedures, reallocation rates, and prediction errors from
the district’s prior method of forecasting enrollment were not available for comparison. Without those bench-
marks, it is unclear whether the use of a random forest algorithm (or any of the other three algorithms) would
meaningfully reduce disruptive reallocation of students and teachers in the fall semester.

Second, and more important, the results might not be generalizable to future years. Though the analysis includ-
ed an additional extrapolation exercise to explicitly account for changes in the structure of attrition and new
entrants across years, the COVID-19 pandemic might have fundamentally altered patterns of attrition and new
entrants in a way that models based on historic data are unable to capture. Even so, in such a scenario, this
analysis is still useful for two reasons. First, although COVID-19 might change the association of incoming cohort
sizes with school-level variables, the ordinal performance rank of algorithms might not change, in which case the
approach with the highest predictive accuracy in this analysis would also be approach with the highest predictive
accuracy in a post-COVID-19 environment. Second, even if the ordinal performance rank of algorithms changes
because of COVID-19, the statistical code produced here is adaptable to future years so that the district can rerun
the analysis to choose the best algorithm in future cohorts.

Implications

The study findings yield four main implications. First, if the goal is to increase predictive accuracy at the typical
school, the choice of algorithm does not appear to be consequential. With the data used in this analysis, the algo-
rithms had similar median absolute deviations in the extrapolation sets (and the test sets), with the random forest
algorithm having a slightly lower median absolute deviation in the extrapolation set than the other methods.
However, the difference in prediction error between the random forest algorithm and the other three algorithms
is less than half a student. Because the median absolute deviation reflects error at the typical school, the simi-
larity of performance across algorithms means that SDP could choose any of the four and achieve similar results.
The root mean squared errors did not markedly differ in the extrapolation set either. These results suggest that if
the district is concerned that machine learning algorithms are difficult to use and understand, it could rely on OLS
with little loss in predictive accuracy.

Second, the performance of the algorithms does not raise equity concerns. Predictive accuracy does not dra-
matically differ across the demographic makeup of cohorts. Incoming cohorts in which the proportion of Black
students or the proportion of economically disadvantaged students is above the median for SDP would not have
been subject to different reallocation rates than cohorts in general (21-22 percent). Cohorts in which the propor-
tion of English learner students is greater than 10 percent would have been subject to slightly more reallocation
than cohorts as a whole—25 percent compared with 22 percent. This additional 3 percentage points translates
into approximately 15 cohorts districtwide. Using predictions of incoming cohort sizes derived from these algo-
rithms is unlikely to have inequitable effects on learning disruptions in the fall.

Third, large sets of variables are not needed to predict cohort sizes. Beyond a handful of variables, few predic-
tors taken from the administrative data were helpful for predicting incoming cohort size. The nature of attrition
and new entrants might frustrate attempts at systematic prediction, or the readily available administrative data
used in this analysis might not have captured the underlying indicators of attrition and new entrants. Alternately,
data on charter school applications or intent to remain in the district might provide much stronger predictors of
incoming cohort sizes.

Fourth, SDP will need better predictors of incoming cohort sizes to successfully reduce reallocation in the fall. The
data and algorithms used in this study do not eliminate reallocation. Overall, the best performing algorithm—random
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forest—would have still exposed between a tenth and a quarter of cohorts to disruptive reallocation of teachers
and students, depending on the district’s tolerance for maximum class size. Using data from additional prior years
is unlikely to improve predictions, as adding information on cohort sizes from two years prior did not meaningful-
ly improve accuracy. Regardless of the methods used, improved accuracy is likely to require additional predictors
that include stronger signals of incoming cohort sizes, data that might be available by June each year.

Despite these modest results, there are two reasons for optimism about the ability of algorithms, be they OLS
or more sophisticated machine learning ones, to help districts accurately predict enrollment. First, SDP obtains
data (such as registration forms) from February to July that are likely to be highly indicative of new entrants and
attrition. If accurate predictions of the late August cohort sizes can be made in July, the district might be able to
substantially reduce reallocation of students in the fall. Teachers would likely still have to be reallocated from the
target year positions assigned to them in the base year, but such staff reshuffling would be far less disruptive in
August than in October. Second, indicators of attrition might be obtainable through enrollment intention surveys
that districts could field in the early spring. In a district such as SDP, with a large school choice system, most attri-
tion is likely to be the result of a deliberate process of shopping for schools. Although new entrants to the district
would not be addressed by such enroliment intention surveys, the surveys might predict attrition well enough to
warrant further exploration of their use. Combining survey data with administrative records in the late spring and
summer might substantially improve predictions of incoming fall cohort sizes.
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